An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets

نویسندگان

  • Bee Wah Yap
  • Khatijahhusna Abd Rani
  • Hezlin Aryani Abd Rahman
  • Simon Fong
  • Zuraida Khairudin
  • Nik Nik Abdullah
چکیده

Most classifiers work well when the class distribution in the response variable of the dataset is well balanced. Problems arise when the dataset is imbalanced. This paper applied four methods: Oversampling, Undersampling, Bagging and Boosting in handling imbalanced datasets. The cardiac surgery dataset has a binary response variable (1=Died, 0=Alive). The sample size is 4976 cases with 4.2% (Died) and 95.8% (Alive) cases. CART, C5 and CHAID were chosen as the classifiers. In classification problems, the accuracy rate of the predictive model is not an appropriate measure when there is imbalanced problem due to the fact that it will be biased towards the majority class. Thus, the performance of the classifier is measured using sensitivity and precision Oversampling and undersampling are found to work well in improving the classification for the imbalanced dataset using decision tree. Meanwhile, boosting and bagging did not improve the Decision Tree performance. KeywordsBagging, Boosting, Oversampling, Undersampling, Imbalanced data

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending Bagging for Imbalanced Data

Various modifications of bagging for class imbalanced data are discussed. An experimental comparison of known bagging modifications shows that integrating with undersampling is more powerful than oversampling. We introduce Local-and-Over-All Balanced bagging where probability of sampling an example is tuned according to the class distribution inside its neighbourhood. Experiments indicate that ...

متن کامل

LIUBoost : Locality Informed Underboosting for Imbalanced Data Classification

The problem of class imbalance along with classoverlapping has become a major issue in the domain of supervised learning. Most supervised learning algorithms assume equal cardinality of the classes under consideration while optimizing the cost function and this assumption does not hold true for imbalanced datasets which results in sub-optimal classification. Therefore, various approaches, such ...

متن کامل

A Novel Approach for Handling Imbalanced Data in Medical Diagnosis using Undersampling Technique

In many data mining applications the imbalanced learning problem is becoming ubiquitous nowadays. When the data sets have an unequal distribution of samples among classes, then these data sets are known as imbalanced data sets. When such highly imbalanced data sets are given to any classifier, then classifier may misclassify the rare samples from the minority class. To deal with such type of im...

متن کامل

Evolutionary Undersampling for Classification with Imbalanced Datasets: Proposals and Taxonomy

Learning with imbalanced data is one of the recent challenges in machine learning. Various solutions have been proposed in order to find a treatment for this problem, such as modifying methods or the application of a preprocessing stage. Within the preprocessing focused on balancing data, two tendencies exist: reduce the set of examples (undersampling) or replicate minority class examples (over...

متن کامل

Using machine learning to cope with imbalanced classes in natural speech: evidence from sentence boundary and disfluency detection

We investigate machine learning techniques for coping with highly skewed class distributions in two spontaneous speech processing tasks. Both tasks, sentence boundary and disfluency detection, provide important structural information for downstream language processing modules. We examine the effect of data set size, task, sampling method (no sampling, downsampling, oversampling, and ensemble sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013